an=n2求和公式推导方法

96次

问题描述:

an=n2求和公式推导方法急求答案,帮忙回答下

最佳答案

推荐答案

(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。

证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

(4)其他推论:

①和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

其他答案

设等式(n+1)^3-n^3=3n^2+3n+1。求和,∑{(n+1)^3-n^3}=3∑n^2+3∑n+∑1。得∑n^2=(1/3){(n+1)^3-1-n-3n(n+1)/2}=(1/6)n(n+1)(2n+1)。这就是自然数的平方和公式。

其他答案

数列1n2求和公式是1+1/22+1/32+ … +12→π2/6 。

推导过程如下:

1、先将sinx按泰勒级数展开: sinx=x-x^3/3!+x^5/5!-x^7/7!+ … 于是sinx/x=1-x^2/3!+x^4/5!-x^6/7!+ … 2、令y=x^2,有sin√y/√y=1-y/3!+y^2/5!-y^3/7!+ … 而方程sinx=0的根为0,±π,±2π,… 故方程sin√y/√y=0的根为π2,(2π)2,… 即1-y/3!+y^2/5!-y^3/7!+…=0的根为π2,(2π)2,… 3、由韦达定理,常数项为1时,根的倒数和=一次项系数的相反数 即1/π2+1/(2π)2+…=1/3! 故1+1/22+1/32+ … =π2/6。

其他答案

设S=1^2+2^2+.+n^2

(n+1)^3-n^3 = 3n^2+3n+1

n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1

...

..

...

2^3-1^3 = 3*1^2+3*1+1

把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+.+n] +n

所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)

为你推荐