相互独立是设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立。设A,B是试验E的两个事件,若P(A)>0,可以定义P(B∣A)。一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B)。

相互独立事件概念

定义:相互独立是设A,B是两事件,如果满足等式P(A*B)=P(A)*P(B),则称事件A,B相互独立,简称A,B独立。

设A,B是试验E的两个事件,若P(A)u003e0,可以定义P(B∣A)。一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B),而只有当A的发生对B发生的概率没有影响的时候(即A与B相互独立)才有条件概率P(B∣A)=P(B)。这时,由乘法定理P(A∩B)=P(B∣A)P(A)=P(A)P(B)。

以上内容仅供参考,部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!

为你推荐